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Quantum decoherence is a proposed mechanism for the emergence of classical physics from the
quantum mechanics. It has been developed extensively in recent years, but is sufficiently technically
complicated to discourage widespread understanding. In this paper we provide a gentle introduction
to quantum decoherence. We introduce state operators and their density matrix representations to
describe composite systems, such as an experiment and its environment. We illustrate how the loss
of information about a subsystem can cause a quantum system to appear classical. We first analyze
a discrete example of phase randomization, then a Bell state, and finally a continuous system. In the
final case we provide an accessible derivation of a major early result of decoherence theory, the
master equation of quantum Brownian motion. We conclude by applying the master equation to the
decoherence of a simple harmonic oscillator, with results reminiscent of our earlier discrete
examples. © 2009 American Association of Physics Teachers.
�DOI: 10.1119/1.3043847�
I. INTRODUCTION

Decoherence theory gives a profound window into quan-
tum mechanics by making the connection between physics
and information not just clear, but necessary.1 Informally,
decoherence describes the emergence of classical behavior
from quantum mechanics by information leakage; if the
quantum-specific details of a system “leak” outside our mea-
surement capability, we cannot observe them. The details of
decoherence theory are sufficiently complicated to discour-
age students and physicists from other fields to pursue a ba-
sic understanding of decoherence. The available literature is
aimed at an advanced audience and contains significant gaps
for most physicists.2–6

In this paper we attempt to rectify this situation by making
the underlying concepts associated with decoherence acces-
sible to a more general audience. We begin in Sec. II by
introducing the concept of a state operator, an object of cen-
tral importance to quantum decoherence theory, through a
simple example first developed by Bernstein.7 We consider a
rudimentary universe consisting of quantum particles and an
“environment” randomized by a roulette wheel, and show
that this randomization leads to diagonalization of the state
operator and the emergence of classical behavior.

In Sec. III we put the treatment in Sec. II on a firmer
mathematical foundation by an example involving an en-
tangled pair of particles . We show that restricting ourselves
to knowledge of only one particle in the pair through a par-
tial trace has the same effect as the phase randomization
process employed in Sec. II.8 Following Halliwell, in Sec. IV
we develop a simple master equation for decoherence in a
continuous model of quantum Brownian motion.3 In Sec. V
we show that, with reasonable assumptions, the master equa-
tion found in Sec. IV results in the same phenomena as we
saw in the simple examples of Secs. II and III.9 Finally, we
demonstrate how the master equation results in the decoher-
ence of a quantum simple harmonic oscillator in a thermal

6
bath.
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II. THE STATE OPERATOR AND PHASE
RANDOMIZATION

A. State operator

To begin, we consider the simplest possible case: spin one-
half particles. In particular, we consider spin one-half neutral
silver atoms, each of which has one unpaired electron. The

spin operator Ŝ represents each atom’s spin angular momen-

tum in a two-dimensional Hilbert space. Ŝ obeys the well-
known commutation relations10–12

i�Ŝx = ŜyŜz − ŜzŜy , �1a�

i�Ŝy = ŜzŜx − ŜxŜz, �1b�

i�Ŝz = ŜxŜy − ŜyŜx, �1c�

and has the matrix representation

Ŝx =
�

2
�̂x, Ŝy =

�

2
�̂y, Ŝz =

�

2
�̂z, �2�

where

�̂x = �0 1

1 0
�, �̂y = �0 − i

i 0
�, �̂z = �1 0

0 − 1
� �3�

are the familiar Pauli matrices.8 These operators and the

identity Î form a complete basis for operators in Hilbert
space. That is,

Â = rIÎ +
rx

2
�̂x +

ry

2
�̂y +

rz

2
�̂z =

1

2
�2rI + rz rx − iry

rx + iry 2rI − rz
� , �4�

where Â is an arbitrary operator, the factors of 2 are by
convention, and rI, rx, ry, and rz are complex scalars.8

We may write the state vector for any spin state of a silver

atom as
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��� = ��↑� + ��↓� = ��1

0
� + ��0

1
� , �5�

a superposition of spin-up and spin-down, defined conven-

tionally as the eigenstates of Ŝz. Because ��� is normalized,
its magnitude is unity;

	���� = ��* �*���

�
� = ��* + ��* = 1. �6�

We construct the state operator and corresponding �density�
matrix representation13 by forming the outer product12,14

�̂ = ���	�� = ��

�
���* �*� = ���* ��*

��* ��*
� . �7�

Although the state vector ��� is physically equivalent to
ei� ��� for any real �, the state operator is free from this
ambiguity and is unique for any state. By Eqs. �6� and �7� the
trace of �̂ is unity,

Tr��̂� = ��* + ��* = 1. �8�

Because �̂ is an operator, we can represent it by Eq. �4�, so
Eq. �8� becomes

Tr��̂� =
1

2
�2rI + rz + 2rI − rz� = 2rI = 1, �9�

which implies that rI=1 /2.8 Equation �7� shows that �̂ is a
Hermitian operator,

�̂† = ����	���† = ���	�� = �̂ . �10�

Hence, rx, ry, and rz are real, and �̂ is a projection operator,10

�̂2 = ���	����	�� = �̂ , �11�

so rx
2+ry

2+rz
2=1. We may represent each of the components

of the unit vector r� in spherical coordinates as8

rx = sin � cos � , �12a�

ry = sin � sin � , �12b�

rz = cos � . �12c�

B. Phase randomizer

With this machinery in hand, we next consider a thought
experiment. Suppose that a silver furnace is connected to an
angular control device, which polarizes the spin of outgoing
atoms in the �=	 /2, x-y plane at an user-specified angle
�.7 Hence, we write Eq. �12� as

rx = cos � , �13a�

ry = sin � , �13b�

rz = 0. �13c�

By Eq. �4�, the state operator of the atom has the matrix
representation

�̂ =
1

2
� 1 + 0 cos � − i sin �

cos � + i sin � 1 − 0
� =

1

2
� 1 e−i�

ei� 1
� .
�14�

245 Am. J. Phys., Vol. 77, No. 3, March 2009

le is copyrighted as indicated in the abstract. Reuse of AAPT content is su

198.102.153.2 On: Tue, 1
We next place a Stern-Gerlach analyzer along the path of
the silver beam to measure the spin of the atoms. The ana-
lyzer, shown in Fig. 1, consists of an inhomogeneous mag-
netic field that sorts spin one-half particles into two bands
based on their magnetic moments, which are proportional to
their spins.7 If we place the magnetic field gradient of the
analyzer along the +ŷ axis, then the spin-sorter observable is

Ô = ŷ · Ŝ =
�

2
�̂y , �15�

and we always observe the eigenvalues 
� /2.
To calculate the observed average value we use the state

operator to find the spin expectation value 	Ô�. For any ob-

servable Â we have12

Tr��̂Â� = 

i

	�i�����	��Â���i� = 

i

	��Â��i�	�i���

= 	��Â�

i

��i�	�i����� = 	��Â��� = 	Â� , �16�

where ���i�� is any orthonormal, complete basis, so

i��i�	�i�= I is the identity. We apply this important result to

Ô and obtain

	Ô� = Tr��̂Ô�

=
�

4
Tr� 1 e−i�

ei� 1
��0 − i

i 0
�

=
�

4
�ie−i� − iei�� =

�

2
sin � , �17�

which is plotted in Fig. 2. As we might expect, the apparatus
measures how close the silver atoms are aligned with the
magnetic field gradient. When �=0, the atom’s spin points
along x̂, which is orthogonal to the magnetic field. Hence,
half of our measurements yield +� /2, while half give −� /2,
averaging to zero. When �=	 /2, the atom spin points along
+ŷ, so we find +� /2 every time. Similarly, when �=−	 /2,
we always measure −� /2.7 This behavior is characteristic of
a coherent quantum superposition and a nondiagonal state
operator.

To crudely model the environment we add another com-

Fig. 1. �Color online� A Stern-Gerlach apparatus sorts atoms either up or
down, depending on their spin. We insert a roulette wheel between the
angular control and the Stern-Gerlach apparatus to crudely model an exter-
nal environment. Each time an atom passes the roulette wheel, we spin the
roulette wheel and add a random value between 0 and 2	 to the atom’s
original spin angle, � �Ref. 15�.
ponent to our apparatus, a classical roulette wheel, between
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the angle control device and the Stern-Gerlach analyzer, as
shown in Fig. 1. The roulette wheel is continuous and ranges
in value between 0 and 2	. Whenever an atom passes by, we
spin the roulette wheel and add its value, �R, to the atom’s
original spin angle, �. In this way the atom is given a new
spin angle, ��=�+�R, which we then measure using the
Stern-Gerlach apparatus.7 Note that because the atom’s spin
is periodic in 2	 and �R is random in the interval 2	, �� is
a random number between 0 and 2	.

To calculate the expectation value 	Ô�R of Ô with the
roulette wheel, we first need to find �̂R, the new state opera-

tor that takes the roulette wheel into account. Because Ô is

independent of the roulette wheel angle �, averaging Ô re-
duces to averaging �̂. Hence, we proceed by averaging the
angle in Eq. �14� over the interval 0 to 2	. We obtain

�̂R =
1

2	


0

2	

d���̂

=
1

2�
1

2	


0

2	

d�� � 1
1

2	


0

2	

d�� � e−i��

1

2	


0

2	

d�� � ei�� 1

2	


0

2	

d�� � 1 �
=

1

2
�1 0

0 1
� =

1

2
Î . �18�

Now, we use Eqs. �15� and �16� to calculate the expectation
value

	Ô�R = Tr��̂RÔ� = Tr�1

2
Î
�

2
�̂y� =

�

4
Tr��y� = 0, �19�

which, as required, is independent of the initial choice of �.
Now at every angle, rather than just �=0 or �=	, half our
measurements yield � /2 and half yield −� /2.7 This behavior
is characteristic of a classical mixture and a diagonal state
operator. We plot this result in Fig. 2. This result is expected,
because it corresponds to letting � go to �� and averaging

the original expectation value 	Ô� �the right side of Eq. �17��,

ρ̂ =
1
2

�
1 0
0 1

�

φ

�
Ô

�

quantum superposition

classical randomness

0 π/2 π 3π/2 2π

−�/2

�/2

0

ρ̂ =
1
2

�
1 e−iφ

eiφ 1

�

Fig. 2. �Color online� The expectation value of the spin-sorter observable Ô
with varying spin angle �. Equation �17�, plotted as a solid line, shows the
quantum behavior of the original system. The filled circles represent de-
structive quantum interference, and the open circles denote constructive in-
terference. As indicated in Eq. �19� and shown as a dashed line, the random-
ness of the roulette wheel destroys the quantum nature of the system.
which also yields an expectation value of zero.
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This thought experiment hints at a fundamental difference
between the cases without and with the roulette wheel. The
randomness of the roulette wheel kicked the spin of the atom
a random amount, which effectively destroyed the off-
diagonal elements of the state operator in Eq. �14�, while
leaving the diagonal elements intact. The loss of the off-
diagonal terms results in the loss of the sinusoidal pattern, a
quantum effect, as we saw in Fig. 2. As we will see, this loss
was no accident: the destruction of off-diagonal elements is
the hallmark of a loss of quantum information and the emer-
gence of the classical world.2,8,9

Our discussion has been quite abstract so far, and the
reader might wonder how such a roulette wheel might work
in a physical system. If the initial state of the atom is the
superposition in Eq. �5�, then under the Schrödinger equation
it evolves to

���t�� =
1
�2

�e−iE↑t/��↑� + e−iE↓t/��↓�� . �20�

Because the atom has a magnetic moment �z=Sz, where 
is the gyromagnetic ratio, its interaction energy with an ex-
ternal magnetic field Bz is

E = �zBz = BzSz, �21�

where Sz= 
� /2. Hence, the state vector

���t�� =
1
�2

�e−iBzt/2�↑� + e+iBzt/2�↓��

=
1
�2

e−iBzt/2��↑� + e+iBzt�↓�� , �22�

and the corresponding state operator has the matrix represen-
tation

��t� = ���t��	��t�� =
1

2
� 1 e−i�

ei� 1
� , �23�

where �=Bzt. Equation �23� has the same form as Eq. �14�.
Thus, the roulette wheel can mimic a fluctuating environ-
mental magnetic field. Such fluctuations effectively destroy
quantum coherence and are responsible for the emergence of
classical behavior.

III. REDUCED STATE OPERATORS
AND PARTIAL INFORMATION

In Sec. II we saw how an external device, a roulette wheel,
destroyed the off-diagonal elements of the density matrix
representation of the state operator. Equivalently, we may
view the loss of the off-diagonal elements as a result of only
partial knowledge of the total system. That is, in Eq. �18� we
focused on the silver atom, while only keeping track of the
roulette wheel statistically.7 It was the act of discarding the
information about the specific position of the roulette wheel
that effectively destroyed quantum superpositions.

A. The reduced state operator

To illustrate the concept of partial knowledge leading to
classical behavior, we consider a universe made of a pair of
two-state systems, each in a linear superposition of the states
�↑� and �↓�. In quantum mechanics we require such composite
systems to remain separated in the sense that observables

dealing only with the first subsystem, when applied to the
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total system, should act only on the first subsystem.12 Math-
ematically, the noncommutative operation we want is known
as the tensor, cartesian, or direct product.8 This product pairs
every possible state of the first system with every possible
state of the second system. For example, the tensor product
of two state vectors with matrix representations

��� = ��1

�2
�, ��� = ��1

�2
� , �24�

is given by

���� = ������ = ��� � ��� = ��1���
�2���

� =�
�1�1

�1�2

�2�1

�2�2

� , �25�

where the two shorthand notations used on the left are
equivalent to the formal notation specified by � �read
tensor�.8 A general state ��� for any two-state system is given
by

��� = 

ab

�ab�ab� = �11�11� + �12�12� + �21�21� + �22�22� ,

�26�

which has the matrix representation

��� =�
�11

�12

�21

�22

� . �27�

The corresponding state operator is

�̂ = ���	�� = 

a1b1a2b2

�a1b1
�

a2b2

* �a1b1�	a2b2�

= 

a1b1a2b2

�a1b1
�

a2b2

* �a1�	a2� � �b1�	b2� �28�

and has the �density� matrix representation

�̂ =�
�11�11

* �11�12
* �11�21

* �11�22
*

�12�11
* �12�12

* �12�21
* �12�22

*

�21�11
* �21�12

* �21�21
* �21�22

*

�22�11
* �22�12

* �22�21
* �22�22

*
� . �29�

The process of finding tensor products of general operators
proceeds similarly. For example, if two operators have ma-
trix representations

Â = �a11 a12

a21 a22
�, B̂ = �b11 b12

b21 b22
� , �30�

then their tensor product has the matrix representation

Â � B̂ = �a11B̂ a12B̂

a21B̂ a22B̂
�

=�
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12� . �31�
a21b21 a21b22 a22b21 a22b22
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Suppose that the composite operator, Ô= Â � B̂, represents
an observable of only the first subsystem A. That is, we want

	Ô� to not depend on the subsystem B. To do so we let B̂

= Î2 be the two-dimensional identity operator so that

Ô = Â � Î2 =�
a11 0 a12 0

0 a11 0 a12

a21 0 a22 0

0 a21 0 a22

� . �32�

Next, we combine Eqs. �32� and �29� to find the expectation

value of Ô via Eq. �16� in the state ��� to be

	Ô�� = Tr��̂Ô�

= ���11�2 + ��12�2�a11 + ��21�11
* + �22�12

* �a12

+ ��11�21
* + �12�22

* �a21 + ���21�2 + ��22�2�a22.

�33�

We now construct a way to discard information about sub-
system B, leaving only information about subsystem A. We
define a reduced or local state operator by performing a par-
tial trace, that is, a trace over the B subsystem of Eq. �28�.
Namely,

�̂A = TrB��̂� = 

a1b1a2b2

�a1b1
�

a2b2

* �a1�	a2�Tr��b1�	b2�� . �34�

Because Tr��b1�	b2��=Tr�	b2 �b1��= 	b2 �b1�=�b2b1
, the sum

contracts to

�̂A = 

a1a2

��a11�
a21
* + �a12�

a22
* ��a1�	a2� , �35�

which has the �reduced density� matrix representation

�̂A = � ��11�2 + ��12�2 �11�21
* + �12�22

*

�21�11
* + �22�12

* ��21�2 + ��22�2
� �36�

or, equivalently,

�̂A =�Tr��11 �12

�21 �22
� Tr��13 �14

�23 �24
�

Tr��31 �32

�41 �42
� Tr��33 �34

�43 �44
� � . �37�

We combine Eqs. �36� and �33� to show that

Tr��̂AÂ� = 	Ô�� = Tr��̂Ô� . �38�

Thus, the reduced state operator �̂A=TrB��̂� is to subsystem
A as the state operator �̂ is to the composite system.

B. Bell state example

We now turn to a famous example of an entangled com-

posite system, known as an EPR pair or Bell state,

247J. K. Gamble and J. F. Lindner

bject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

9 Nov 2013 00:06:47



 This artic
��� =
1
�2

��↑↑� − �↓↓�� =
1
�2�

+ 1

0

0

− 1
� . �39�

This state is a superposition of both subsystems being �↑� and
both being �↓�, with equal probability.8 Physically, such a
state occurs during the decay of positronium, where �↑� and
�↓� correspond to the helicity of the resulting photons.16 This
state is remarkable, particularly due to the perfect correlation
of the two subsystems. If the first is found in �↑�, then the
second will always be in �↑�, and vice versa.

From Eq. �29� the Bell state operator has the �density�
matrix representation

�̂ = ���	�� =
1

2�
1 0 0 − 1

0 0 0 0

0 0 0 0

− 1 0 0 1
� , �40�

which has nonzero nondiagonal terms and represents an en-
tangled state. However, by Eq. �37�, the reduced Bell state
operator that characterizes the first subsystem has the matrix
representation

�̂A = TrB��̂� =
1

2
�1 0

0 1
� , �41�

which is diagonal and represents a mixed state.
The reduced state operator �̂A has the same form as we

found in Eq. �18�, after the roulette wheel had stripped the
quantum interference terms from the state operator. Hence,
just as for the silver atom and the roulette wheel, the indi-
vidual subsystems of the Bell state lack quantum properties,
and instead are statistical states.8 Evidently, a manifestly
quantum-mechanical system can be made of ostensibly clas-
sical pieces. Hence, the discarding of �quantum� information,
wherein an entangled state is replaced by a mixed state, sig-
nals the emergence of classical behavior.

IV. CONTINUOUS DECOHERENCE AND QUANTUM
BROWNIAN MOTION

Now that we have established the connection between the
disappearance of the off-diagonal elements of the �density�
matrix representation of the state operator with the emer-
gence of classical behavior, we explore how such a process
occurs in a continuous physical system. In addition to the
state vector ��� and the state operator �̂= ���	��, we make use
of the position representation of the state vector, the wave
function ��x�= 	x ���. In Sec. IV A we consider a free quan-
tum mechanical system. In Sec. IV B we analyze the effect
of a single collision between the system particle and envi-
ronment particle. Finally, in Sec. IV C we place the system in
thermal equilibrium with a statistical gas. This last system is
reminiscent of classical Brownian motion and has served as a
tractable example of a simple system interacting with a com-
plex environment that is treated statistically.

A. The free system

According to the Schrödinger equation, the state vector ���

of a free particle of mass m evolves with time t according to

248 Am. J. Phys., Vol. 77, No. 3, March 2009
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i�
�

�t
��� =

p̂2

2m
��� , �42�

where p̂ is the momentum operator. Because p̂= p̂† is Her-
mitian, the adjoint of Eq. �42� is

− i�
�

�t
	�� = 	��

p̂2

2m
. �43�

Together with Eq. �7�, Eqs. �42� and �43� imply that the time
derivative of the state operator is

�

�t
�̂ =

�

�t
���	�� = � �

�t
����	�� + ���� �

�t
	���

=
p̂2

i�2m
���	�� − ���	��

p̂2

i�2m
. �44�

We let �x� and �y� be eigenstates of definite position and
multiply both sides of Eq. �44� by 	x� from the left and �y�
from the right to find3,17

�

�t
��x,y� = 	x�

�

�t
�̂�y�

=
1

i�2m
�	x�p̂2���	��y� − 	x���	��p̂2�y�� �45a�

=
1

i�2m
���

i

�

�x
�2

	x���	��y�

− ��

i

�

�y
�2

	x���	��y�� �45b�

=
i�

2m
� �2

�x2 −
�2

�y2���x,y� , �45c�

where ��x ,y�= 	x��̂�y�= 	x ���	� �y� are the matrix elements
of �̂.8,18 These elements correspond to the probability ampli-
tude to go from an initial state �y� to a final state �x� via an
intermediate state ���.16,19 A laboratory system is always lo-
calized in space, so we expect ��x ,y�→0 as �x−y�→�. Note
also that the energy eigenstate wavefunctions of the free par-
ticle �plane waves� have the form

��x� = ei�px−Et�/� �46�

and render Eq. �45� identically zero, as we would expect for
stationary states.

B. Analyzing a single collision

We next investigate the one-dimensional collision of a
single environment particle with a system �or Brownian� par-
ticle. We assume that the environment particle has mass me,
precollision momentum pe, and postcollision momentum p̃e,
and the system particle has mass ms, precollision momentum
ps, and postcollision momentum p̃s. For an ideal collision
conservation of momentum and kinetic energy imply20

p̃s =
ms − me ps +

2ms pe, �47a�

ms + me ms + me
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p̃e =
2me

ms + me
ps −

ms − me

ms + me
pe. �47b�

We assume that the system particle is very massive com-
pared to the environment particle, that is, ms�me, and apply
this approximation to Eq. �47� to obtain

p̃s � ps + 2pe, �48a�

p̃e � 2
me

ms
ps − pe. �48b�

If we assume that the environment particle is moving much
faster than the system particle, so pe /me� ps /ms, then Eq.
�48� becomes

p̃s � ps + 2pe, �49a�

p̃e � − pe. �49b�

In quantum mechanics we can expand the two-particle pre-
and postcollision position wavefunctions �or wave packets�
in terms of plane wave momentum eigenstates. In analogy to
the classical case, we assume that Eq. �49� holds for all mo-
mentum states. If xs and xe are the initial positions of the
system and the environment particles, and ��pe , ps� is the
momentum wave function, then immediately after the colli-
sion

�̃�xe,xs� = dp̃edp̃s

2	�
��p̃e, p̃s�ei�p̃exe+p̃sxs�/�

= �J�
dpedps

2	�
��p̃e, p̃s�ei�p̃exe+p̃sxs�/�, �50�

where the absolute value of the Jacobian determinant of the
momentum transformation in Eq. �47� is �J�=1. We use the
approximation �49� and define �̃�pe , ps�=��p̃e , p̃s�, so that

�̃�xe ,xs� becomes

�̃�xe,xs� �  dpedps

2	�
�̃�pe,ps�ei�pe�2xs−xe�+psxs�/� �51a�

� dpedps

2	�
�̃�pe,ps�ei�pex̃e+psx̃s�/�, �51b�

where the changes in momenta due to the collision induce
the new positions x̃s�xs and x̃e�2xs−xe in each of the mo-
mentum eigenstates.3

C. Treatment of a statistical environment

We place the quantum mechanical system in an environ-
ment containing an ideal gas, as shown in Fig. 3. To find the
total state operator we use the composite system formalism
we developed in Sec. III. The composite state operator �̂ is

�̂ = �̂s � �̂e, �52�

where �̂s is the state operator of the system and �̂e is the state
operator of the environment particle.8,12 We take xs and ys to
be arbitrary system coordinates, and xe and ye to be the ar-
bitrary environment particle coordinates, still in one dimen-
sion. We form matrix elements of Eq. �52� by multiplying
both sides by 	xs� � 	xe� from the left and �ys� � �ye� from the

right, so that
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�	xs� � 	xe���̂��ys� � �ye�� = 	xs��̂s�ys� � 	xe��̂e�ye� , �53�

which can be written as

��xs,ys,xe,ye� = �s�xs,ys��e�xe,ye� , �54�

where the tensor product reduces to an ordinary product be-
cause the factors are scalars. If we assume that the collisions
between system and environment particles are their only in-
teractions, after a collision, we have

�̃�xs,ys,xe,ye� = ��x̃s, ỹs, x̃e, ỹe� = �s�x̃s, ỹs��e�x̃e, ỹe� . �55�

As in Sec. III we now focus on the system, a subset of our
universe. Following Eq. �34�, we form the system’s final re-
duced state operator by finding the partial trace over the en-
vironmental degrees of freedom of the total state operator,

�̃s�xs,ys� = Tre��̃�xs,ys,xe,ye�� = �s�x̃s, ỹs�Tre��e�x̃e, ỹe��

= �s�xs,ys�Tre��e�2xs − xe,2ys − ye�� . �56�

Because the position basis is continuous, the trace is an in-
tegral rather than a sum.21 Working on the diagonal, we set
xe=ye and integrate to get3

� � Tre��e�2xs − xe,2ys − ye��

= 
−�

�

dxe�e�2xs − xe,2ys − xe� �57a�

=
−�

�

d��e�� + 2�xs − ys�,�� . �57b�

where �=2ys−xe.
For a laboratory experiment localized in space the state

operator and its derivatives are very small for large separa-
tions �xs−ys�. Thus, we expand the integrand of � in powers
of 2�xs−ys� to second order to obtain

� � 
−�

�

d��e��,�� + 2�xs − ys�
−�

� �d�
�

�X
�e�X,���

X=�

+ 2�xs − ys�2
−�

� �d�
�2

�X2�e�X,���
X=�

, �58�

where the derivatives act only on the first of the state opera-
tor’s two arguments. In Sec. II we noted that the state opera-
tor has unit trace. Hence, the first term of Eq. �58� simplifies

TemperatureT
System

Collision Rate Γ

Environment
Fig. 3. �Color online� A cartoon of a quantum mechanical system undergo-
ing collisions at a rate � with an ideal gas at temperature T. For simplicity,
we consider the analogous one-dimensional system.
to
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−�

�

d��e��,�� = Tr��̂e� = 1. �59�

Now, we apply the definition of the momentum operator to
the last two terms. We use Eq. �16� to identify the expecta-
tion value of the momentum operator,


−�

� �d�
�

�X
�e�X,���

X=�

= − 
−�

�

d�
p̂

i�
�e��,�� �60a�

=−
1

i�
Tr�p̂�̂e� = −

1

i�
	p̂� = 0,

�60b�

which vanishes because the environment particles are as-
sumed to have random velocities.3 Similarly,


−�

� �d�
�2

�X2�e�X,���
X=�

= −
1

�2 	p̂2� . �61�

Therefore, Eq. �58� becomes

� = 1 −
2�xs − ys�2

�2 	p̂2� . �62�

Because we assumed the environment to be an ideal one-
dimensional gas, we know that

	p̂2�
2me

=
1

2
kT , �63�

or 	p̂2�=mekT, where me is the mass of an environment par-
ticle, k is Boltzmann’s constant, and T is the temperature of
the environment.22 For a time interval �t and a collision rate
� the total change in the system state operator is

��s = ��t��̃s�xs,ys� − �s�xs,ys�� �64a�

=��t�� − 1��s�xs,ys� . �64b�

If we use Eqs. �62� and �63�, Eq. �64� becomes

��s = − 2��t�xs − ys�2mekT

�2 �s�xs,ys� . �65�

Thus, due to collisions only, the rate of change of the matrix
elements of the system state operator is

��s

�t
= − 2�xs − ys�2�mekT

�2 �s. �66�

As we will illustrate by an example in Sec. V, Eq. �66� is a
differential equation for exponential decay of the off-
diagonal �xs�ys� elements.

Because the only forces on the system are due to environ-
mental collisions, we may combine Eqs.�66� and �45� to ob-
tain the total equation of motion for the system,

�

�t
�s =

i�

2ms
� �2

�xs
2 −

�2

�ys
2��s − 2�xs − ys�2mskT

�2 �s, �67�
where we have made the conventional definition for the
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dissipation =�me /ms.
3 Equation �67� is a special case of

the master equation for quantum Brownian motion,5,6,9,23 and
we now explore its significance.

V. DECOHERENCE OF A QUANTUM SIMPLE
HARMONIC OSCILLATOR

We apply the general results of Eq. �67� to the example of
a decohering quantum simple harmonic oscillator. As is well
known,10,11 the wavefunction for the nth energy level of the
one-dimensional harmonic oscillator of mass m and classical
frequency � is

��x� =
1

�n!
�� �

2m�
�m�

�
x − �x��n�m�

	�
�1/4

e−m�x2/2�.

�68�

The relation between the wavefunction and matrix elements
of the system’s state operator is

�s�x,y� = 	x���	��y� = ��x��*�y� , �69�

so

�s�x,y� =
1

n!
�m�

	�
�1/2� �

2m�
�n�m�

�
x − �x�n

��m�

�
y − �y�n

e−m�x2/2�e−m�y2/2�. �70�

We next determine how this state operator varies with time
when the oscillator is placed into thermal equilibrium with
an ideal statistical gas. We notice that due to the macroscopi-
cally small �2 in its denominator, the last term of the master
equation, Eq. �67�, will dominate for all but microscopic
separations �x−y�, and Eq. �67� simplifies to

��s

�t
� − 2�x − y�2mkT

�2 �s, �71�

with the solution

�s�x,y,t� = �s�x,y,0�e−�2mkT/�2��x − y�2t. �72�

It is conventional to introduce the separation-dependent de-
coherence time9,24

td�x,y� =
�2

2mkT�x − y�2 , �73�

so that

�s�x,y,t� = �s�x,y,0�e−t/td�x,y�. �74�

We see that the off-diagonal elements of the state operator’s
matrix representation vanish exponentially with time, and el-
ements farther from the diagonal disappear faster than ele-
ments nearer to the diagonal. Because the quantum interfer-
ence terms that define quantum superpositions exist in the
off-diagonal elements, we see that the superposition states of
the harmonic oscillator decay exponentially with time. To
visualize this decay we plot in Fig. 4 the matrix elements of
the state operator of a decohering simple harmonic oscillator
initially in its third excited state.6 The light and dark regions
correspond to peaks and valleys in a three-dimensional rep-

resentation, which level out as time proceeds. In analogy
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with Eqs. �18� and �41� the off-diagonal �x�y� elements
decay, leaving a statistical, classical state down the diagonal
of the state operator.

VI. CONCLUSION

We have offered three complementary arguments, each re-
lated to the origin of quantum-classical emergence using de-
coherence. In Sec. II we considered phase randomization
through the coupling with a roulette wheel, establishing the
connection between the off-diagonal elements of the state
operator and quantum properties. In Sec. III we traced infor-
mation out of a composite system, showing that subsystems
could separately appear classical while together forming a
quantum whole, and that such classical behavior is marked
by a diagonal reduced state operator. In Sec. IV we consid-
ered the physical origins of such information leakage by way
of a statistical environment. By tracing out the environment
and focusing on the harmonic oscillator system in Sec. V, we
were left with a diagonal, and hence classical, reduced state
operator.

Although decoherence provides a physical way to explain
the small pockets of classical behavior we observe, it does
not attempt to answer the fundamental questions regarding
the nature of measurement and interpretation.1,25 For in-
stance, is our classical world just a reduction from the true
universe, which ultimately exists as a single state operator
over Hilbert space?9

Fortunately such questions are of greater philosophical
than physical importance. However, the conventional inter-

x

y

t = td

t = 0.2 td

Fig. 4. �Color online� The matrix elements of the state operator �s�x ,y , t� of
a decohering quantum harmonic oscillator initially in its n=3 excited state,
calculated using the approximate solution to the master equation given by
Eq. �74�. Dark shading indicates negative values, and light shading indicates
positive values.
pretation of a measurement is not good enough for contem-
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porary experiments in quantum mechanics.26 Current efforts
in quantum computation, for example, make use of decoher-
ence theory to calculate the quality of a quantum state.1 Al-
though decoherence theory might not put the final nail in the
coffin of Schrödinger’s cat, its utility makes it a vital part of
interpreting quantum mechanics.

ACKNOWLEDGMENTS

The authors thank Todd C. McAlpine, Matthew T. Gorski,
Thomas M. Linz, Jacob Lynn, and Patrick M. Odenthal for
their valuable discussions and suggestions. J.K.G. acknowl-
edges support from The College of Wooster. The authors are
also grateful to the anonymous reviewers for their detailed
comments and feedback.

1Philip Ball, “Quantum all the way,” Nature �London� 453, 22–25 �2008�.
2Wojciech H. Zurek, “Decoherence and the transition from quantum to
classical,” Phys. Today 44�10�, 36–44 �1991�.

3J. J. Halliwell, “Two derivations of the master equation of quantum
Brownian motion,” J. Phys. A 40, 3067–3080 �2007�.

4Maximilian Schlosshauer, “Decoherence, the measurement problem, and
interpretations of quantum mechanics,” Rev. Mod. Phys. 76�4�, 1267–
1305 �2004�.

5Wojciech Hubert Zurek, “Decoherence, einselection, and the quantum
origins of the classical,” Rev. Mod. Phys. 75�3�, 715–775 �2003�.

6E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O.
Stamatescu, Decoherence and the Appearance of a Classical World in
Quantum Theory, 2nd ed. �Springer, New York, 2003�, pp. 66–81.

7George Greenstein and Arthur G. Zajonc, The Quantum Challenge: Mod-
ern Research on the Foundations of Quantum Mechanics, 2nd ed. �Jones
and Bartlett, Sudbury, MA, 2006�, 2nd ed., pp. 193–199.

8Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information, 2nd ed. �Cambridge U. P., Cambridge, 2000�, pp.
71–75, 98–108.

9Roland Omnès, Understanding Quantum Mechanics �Princeton U. P.,
Princeton, 1999�, pp. 200–203, 235–256.

10Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë, Quantum Me-
chanics �Hermann, Paris, France, 1977�, pp. 114–116 501, 646.

11 David J. Griffiths, Introduction to Quantum Mechanics �Pearson Educa-
tion, Upper Saddle River, NJ, 2005�, pp. 56–57, 65, 160–161.

12Leslie E. Ballentine, Quantum Mechanics: A Modern Development
�World Scientific, Singapore., 1998�, pp. 42–52, 85–87, 160–162.

13States that are prepared statistically, called mixtures or mixed states, have
diagonal state operators. Such states are inherently non-quantum-
mechanical and have no corresponding state vector. To convince oneself
of this remarkable fact, try to represent the mixture in Eq. �18� as the
product ���	��.

14Jamshid Sabbaghzadeh and Ali Dalafi, “The role of the density operator
in the statistical description of quantum systems,” Am. J. Phys. 75�12�,
1162–1165 �2007�.

15Background image from Bretislav Friedrich and Dudley Herschbach,
“Stern and Gerlach: How a bad cigar helped reorient atomic physics,”
Phys. Today 56�12�, 53–59 �2007�.

16Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feyn-
man Lectures on Physics: Quantum Mechanics �Addison-Wesley, Read-
ing, MA, 1965�, pp. �3.1�–�3.4�, �18–7�.

17John Townsend, A Modern Approach to Quantum Mechanics �University
Science Books, New York, 2000�, Sec. 6.4.

18Some authors represent ��X ,X�= ���X��2 by ��X� and refer to it as the
probability density.

19L. V. Tarasov, Basic Concepts of Quantum Mechanics, translated by Ram
S. Wadhwa �MIR, Moscow, 1980�, pp. 79–84.

20David Halliday, Robert Resnick, and Jearl Walker, Fundamentals of
Physics, 7th ed. �Wiley, Hoboken, NJ, 2005�, p. 222.

21Recall that for an arbitrary n�n matrix M�j ,k�, we calculate the trace by
setting j=k and summing from 1 to n. Similarly, in the continuous case,
we set x=y and sum over all possible position values. Hence, we have an
integral over all real numbers.

22Charles Kittel and Herbert Kroemer, Thermal Physics, 2nd ed. �Freeman,

San Francisco, 1980�, p. 164.

251J. K. Gamble and J. F. Lindner

bject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

9 Nov 2013 00:06:47



 This artic
23Equation �67� is missing the dissipation term, which damps the motion of
the system. This damping is not that important in the regime in which we
are looking. To develop a master equation with dissipation we would use
Wigner’s quasi-probability function in phase-space, improving the accu-
racy of our approximations �Ref. 29�. Further background on the Wigner
function is discussed in Refs. 27 and 28.

24For example, Ref. 6 calculates the decoherence time of a dust particle
with radius 10−7 m in air to be about 10−13 s.

25F. Laloë, “Do we really understand quantum mechanics? Strange corre-

lations, paradoxes, and theorems,” Am. J. Phys. 69�6�, 655–701 �2001�.

252 Am. J. Phys., Vol. 77, No. 3, March 2009

le is copyrighted as indicated in the abstract. Reuse of AAPT content is su

198.102.153.2 On: Tue, 1
26C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W.
M. Itano, C. Monroe, and D. J. Wineland, “Decoherence of quantum
superpositions through coupling to engineered reservoirs,” Nature
�London� 403, 269–273 �2000�.

27E. P. Wigner, “On the quantum correction for thermodynamic equilib-
rium,” Phys. Rev. 40, 749–759 �1932�.

28Y. S. Kim and E. P. Wigner, “Canonical transformation in quantum me-
chanics,” Am. J. Phys. 58�5�, 439–448 �1990�.

29John King Gamble, “Foundations of quantum decoherence,”

arXiv:0805.3178v1.
252J. K. Gamble and J. F. Lindner

bject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

9 Nov 2013 00:06:47


